

EVEN VERTEX EQUITABLE EVEN LABELING FOR TREE RELATED GRAPHS

A. Lourdusamy ${ }^{1}$, S. Jenifer Wency ${ }^{2}$ and F. Patrick ${ }^{3}$
${ }^{1,2,3}$ Department of Mathematics, St. Xavier's College, (Autonomous), Palayamkottai, Tamilnadu, India.
*E-mail: lourdusamy15@gmail.com

Received : January 2018 Accepted : May 2018

Abstract

Let G be a graph with p vertices and q edges and $A=\{0,2,4, \cdots, q+1\}$ if q is odd or $A=\{0,2,4, \cdots, q\}$ if q is even. A graph G is said to be an even vertex equitable even labeling if there exists a vertex labeling $f: V(G) \rightarrow A$ that induces an edge labeling f^{*} defined by $f^{*}(u v)=f(u)+f(v)$ for all edges $u v$ such that for all a and b in $A,\left|v_{f}(a)-v_{f}(b)\right| \leq 1$ and the induced edge labels are $2,4, \cdots, 2 q$, where $v_{f}(a)$ be the number of vertices v with $f(v)=a$ for $a \in A$. A graph that admits even vertex equitable even labeling is called an even vertex equitable even graph. In this paper, we prove that $T \hat{o} Q_{n}, T \tilde{o} Q_{n}$ and H-graph are an even vertex equitable even graphs.

Keywords: Vertex equitable labeling, even vertex equitable even labeling, tree.

1. Introduction

All graphs considered here are simple, finite, connected and undirected. The vertex set and the edge set of a graph are denoted by $V(G)$ and $E(G)$ respectively. We follow the basic notations and terminology of graph theory as in [2]. A labeling of a graph is a map that carries the graph elements to the set of numbers, usually to the set of non-negative or positive integers. If the domain is the set of vertices then the labeling is called vertex labeling. If the domain is the set of edges then the labeling is called edge labeling. If the labels are assigned to both vertices and edges then the labeling is called total labeling. For a dynamic survey of various graph labeling, we refer to Gallian [1].

Lourdusamy et al. introduced the concept of vertex equitable labeling in [20]. Let G be a graph with p vertices and q edges and let $A=\left\{0,1,2, \cdots,\left\lceil\frac{q}{2}\right\rceil\right\}$. A vertex labeling $f: V(G) \rightarrow A$ induces an edge labeling f^{*} defined by $f^{*}(u v)=f(u)+f(v)$ for all edges $u v$.

For $a \in A$, let $v_{f}(a)$ be the number of vertices v with $f(v)=a$. A graph G is said to be vertex equitable if there exists a vertex labeling f such that for all a and b in $A,\left|v_{f}(a)-v_{f}(b)\right| \leq 1$ and the induced edge labels are $1,2,3, \cdots, q$.

Motivated by the concept of vertex equitable labeling and further results by Jeyanthi et al. in [4, 5, 6, 7, 8, 9, 10, 11]. Lourdusamy et al. introduced the concept of even vertex equitable even labeling [18]. In [12, 13, 14, 15, 16, 17, 18, 19], they proved that path, comb, complete bipartite, cycle, $K_{2}+m K_{1}$, bistar, ladder, $S\left(L_{n}\right), S\left(B_{n, n}\right), L_{n} \odot K_{1}, P_{n}^{2}, S\left(P_{n} \odot K_{1}\right), S^{\prime}\left(P_{n}\right), T\left(P_{n}\right)$, graph obtained by duplication of each vertex by an edge in $P_{n}, Q_{n}, S\left(Q_{n}\right), D\left(Q_{n}\right), A\left(T_{n}\right)$, $D A\left(T_{n}\right), P_{n} \odot m K_{1}, P_{n}\left(Q_{m}\right), S^{*}\left(P_{n} \odot K_{1}\right), S^{*}\left(L_{n}\right), S^{*}\left(B_{n, n}\right), B_{n, n}^{2}, S^{\prime}\left(B_{n, n}\right), L_{n} \odot m K_{1}$, $C_{n} \odot K_{1}, T_{p}$-tree, $T \hat{o} P_{n}, T \hat{o} 2 P_{n}, T \hat{o} C_{n}(n \equiv 0,3(\bmod 4)), T \tilde{o} C_{n}(n \equiv 0,3(\bmod 4))$, $T \hat{o} K_{1, n}$, $T \odot \overline{K_{n}}, C_{m} \ominus P_{n}, C_{n}\left(Q_{m}\right),\left[P_{n} ; C_{m}^{(2)}\right], C_{m} *_{e} C_{n}$ and the graph obtained by duplicating an arbitrary vertex and edge of a cycle C_{n} admit an even vertex equitable even labeling. We proved that wheel graph W_{n} and complete graph $K_{n},(n>3)$ are not an even vertex equitable even graph. Also, we proved that $G_{1} * G_{2}$, bistar $B(n, n+1)$, caterpillar, arbitrary super subdivision of any path, $k C_{4}$-snake, $S\left(D\left(Q_{n}\right)\right), S\left(D\left(T_{n}\right)\right), D A\left(Q_{m}\right) \odot n K_{1}$, $D A\left(T_{m}\right) \odot n K_{1}, S\left(D A\left(Q_{n}\right)\right), S\left(D A\left(T_{n}\right)\right)$, jewel graph J_{n}, jelly fish graph $(J F)_{n}$, balanced lobster $B L(n, 2, m),\left\langle L_{n} \hat{o} K_{1, m}\right\rangle$, tadpole $T(m, n)$ and $K_{1, n} \cup K_{1, n+k}$ if $k \in\{1,2,3\}$ admit an even vertex equitable even labeling.

In this paper, we prove that $T \hat{o} Q_{n}, T \tilde{o} Q_{n}$ and H-graph admit an even vertex equitable even labeling. We use the following definitions in the subsequent sections.

Definition 1.1. Let G be a graph with p vertices and q edges and $A=\{0,2,4, \cdots, q+1\}$ if q is odd or $A=\{0,2,4, \cdots, q\}$ if q is even. A graph G is said to be an even vertex equitable even labeling if there exists a vertex labeling $f: V(G) \rightarrow A$ that induces an edge labeling f^{*} defined by $f^{*}(u v)=f(u)+f(v)$ for all edges uv such that for all a and b in $A,\left|v_{f}(a)-v_{f}(b)\right| \leq 1$ and the induced edge labels are $2,4, \cdots, 2 q$, where $v_{f}(a)$ be the number of vertices v with $f(v)=a$ for $a \in A$. A graph that admits even vertex equitable even labeling is called an even vertex equitable even graph.

Definition 1.2. [3] Let T be a tree and u_{0} and v_{0} be two adjacent vertices in T. Let there be two pendant vertices u and v in T such that the length of $u_{0}-u$ path is equal to the length of $v_{0}-v$ path. If the edge $u_{0} v_{0}$ is deleted from T and u, v are joined by an edge $u v$, then such a transformation of T is called an elementary parallel transformation (or an ept) and the edge $u_{0} v_{0}$ is called transformable edge.

If by the sequence of ept's, T can be reduced to a path, then T is called a T_{p}-tree (transformed tree) and such a sequence regarded as a composition of mappings (ept's) denoted by P, is called a parallel transformation of T. The path, the image of T under P is denoted as $P(T)$.

A T_{P}-tree and a sequence of two ept's reducing it to a path are shown in Figure 1.

Figure 1

Definition 1.3. Let G_{1} be a graph with p vertices and G_{2} be any graph. A graph $G_{1} \hat{o} G_{2}$ is obtained from G_{1} and p copies of G_{2} by identifying one vertex of $i^{\text {th }}$ copy of G_{2} with $i^{\text {th }}$ vertex of G_{1}.

Definition 1.4. Let G_{1} be a graph with p vertices and G_{2} be any graph. A graph $G_{1} \tilde{o} G_{2}$ is obtained from G_{1} and p copies of G_{2} by joining one vertex of $i^{\text {th }}$ copy of G_{2} with $i^{\text {th }}$ vertex of G_{1} by an edge.

Definition 1.5. The H-graph is the graph obtained from two copies of P_{n} with vertices $u_{1}, u_{2}, \cdots, u_{n}$ and $v_{1}, v_{2}, \cdots, v_{n}$ by joining the vertices $u_{\left\lfloor\frac{n}{2}\right\rfloor}$ and $v_{\left\lceil\frac{n}{2}\right\rceil}$. It is denoted by H_{n}.

2. TREE RELATED GRAPHS

Theorem 2.1. Let T be a T_{p}-tree on m vertices. Then the graph $T \hat{o} Q_{n}$ is an even vertex equitable even graph.

Proof. Let T be a T_{p}-tree with m vertices. By the definition of a transformed tree there exists a parallel transformation P of T such that for the path $P(T)$, we have $(i) V(P(T))=V(T)$ and $(i i) E(P(T))=\left(E(T)-E_{d}\right) \bigcup E_{p}$, where E_{d} is the set of edges deleted from T and E_{p} is the set of edges newly added through the sequence $P=\left(P_{1}, P_{2}, \cdots, P_{k}\right)$ of the epts P used to arrive at the path $P(T)$. Clearly, E_{d} and E_{p} have the same number of edges. Denote the vertices of $P(T)$ successively as $v_{1}, v_{2}, \cdots, v_{m}$ starting from one pendant vertex of $P(T)$ right up to the other. Let $u_{1}^{j}, u_{2}^{j}, \cdots, u_{n}^{j}, u_{n+1}^{j}(1 \leq j \leq m)$ be the vertices of $j^{t h}$ copy of Q_{n} with $u_{n+1}^{j}=v_{j}$. Then $V\left(T \hat{o} Q_{n}\right)=\left\{u_{i}^{j}: 1 \leq i \leq n+1,1 \leq j \leq m\right\} \bigcup\left\{x_{i}^{j}, y_{i}^{j}: 1 \leq i \leq\right.$ $n, 1 \leq j \leq m\}$ and $E\left(T \hat{o} Q_{n}\right)=E(T) \bigcup E\left(Q_{n}\right)$. We note that $\left|V\left(T \hat{o} Q_{n}\right)\right|=m(3 n+1)$ and $\left|E\left(T \hat{o} Q_{n}\right)\right|=4 m n+m-1$. Define
$f: V\left(T \hat{o} Q_{n}\right) \rightarrow A= \begin{cases}0,2, \cdots, 4 m n+m & \text { if } 4 m n+m-1 \text { is odd } \\ 0,2, \cdots, 4 m n+m-1 & \text { if } 4 m n+m-1 \text { is even }\end{cases}$
as follows:
For $1 \leq i \leq n+1$,

$$
\begin{aligned}
& f\left(u_{i}^{j}\right)= \begin{cases}(4 n+1)(j-1)+4(i-1) & \text { if } j \text { is odd and } 1 \leq j \leq m \\
(4 n+1) j-4(i-1) & \text { if } j \text { is even and } 1 \leq j \leq m ;\end{cases} \\
& f\left(v_{j}\right)=f\left(u_{n}^{j}\right) ; \\
& \text { For } 1 \leq i \leq n \text {, }
\end{aligned}
$$

$$
\begin{aligned}
& f\left(x_{i}^{j}\right)= \begin{cases}(4 n+1)(j-1)+4 i & \text { if } j \text { is odd and } 1 \leq j \leq m \\
(4 n+1) j-4 i+2 & \text { if } j \text { is even and } 1 \leq j \leq m\end{cases} \\
& f\left(y_{i}^{j}\right)= \begin{cases}(4 n+1)(j-1)+4(i-1)+2 & \text { if } j \text { is odd and } 1 \leq j \leq m \\
(4 n+1) j-4 i & \text { if } j \text { is even and } 1 \leq j \leq m\end{cases}
\end{aligned}
$$

Let $v_{i} v_{j}$ be a transformed edge in $T, 1 \leq i<j \leq m$ and let P_{1} be the ept obtained by deleting the edge $v_{i} v_{j}$ and adding the edge $v_{i+t} v_{j-t}$ where t is the distance of v_{i} from v_{i+t} and the distance of v_{j} from v_{j-t}. Let P be a parallel transformation of T that contains P_{1} as one of the constituent epts.

Since $v_{i+t} v_{j-t}$ is an edge in the path $P(T)$, it follows that $i+t+1=j-t$ which implies $j=i+2 t+1$. Therefore, i and j are of opposite parity.
The value of the edge $v_{i} v_{j}$ is given by

$$
\begin{aligned}
f^{*}\left(v_{i} v_{j}\right) & =f^{*}\left(v_{i} v_{i+2 t+1}\right) \\
& =f\left(v_{i}\right)+f\left(v_{i+2 t+1}\right) \\
& =(4 n+1)(2 i+2 t)
\end{aligned}
$$

The value of the edge $v_{i+t} v_{j-t}$ is given by

$$
\begin{aligned}
f^{*}\left(v_{i+t} v_{j-t}\right) & =f^{*}\left(v_{i+t} v_{i+t+1}\right) \\
& =f\left(v_{i+t}\right)+f\left(v_{i+t+1}\right) \\
& =(4 n+1)(2 i+2 t) .
\end{aligned}
$$

Therefore, $f^{*}\left(v_{i} v_{j}\right)=f^{*}\left(v_{i+t} v_{j-t}\right)$.
The induced edge labels are

$$
f^{*}\left(v_{j} v_{j+1}\right)=(4 n+1)(2 j), 1 \leq j \leq m-1
$$

For $1 \leq j \leq m$ and $1 \leq i \leq n$,

$$
\begin{aligned}
& f^{*}\left(u_{i}^{j} x_{i}^{j}\right)= \begin{cases}(4 n+1) 2(j-1)+4(2 i-1) & \text { if } j \text { is odd } \\
(4 n+1) 2 j-4(2 i-1)+2 & \text { if } j \text { is even ; }\end{cases} \\
& f^{*}\left(u_{i}^{j} y_{i}^{j}\right)= \begin{cases}(4 n+1) 2(j-1)+8(i-1)+2 & \text { if } j \text { is odd } \\
(4 n+1) 2 j-4(2 i-1) & \text { if } j \text { is even ; }\end{cases} \\
& f^{*}\left(x_{i}^{j} u_{i+1}^{j}\right)= \begin{cases}(4 n+1) 2(j-1)+8 i & \text { if } j \text { is odd } \\
(4 n+1) 2 j-8 i+2 & \text { if } j \text { is even } ;\end{cases} \\
& f^{*}\left(y_{i}^{j} u_{i+1}^{j}\right)= \begin{cases}(4 n+1) 2(j-1)+8 i-2 & \text { if } j \text { is odd } \\
(4 n+1) 2 j-8 i & \text { if } j \text { is even } .\end{cases}
\end{aligned}
$$

Thus, it can be verified that the induced edge labels of $T \hat{o} Q_{n}$ are $2,4, \cdots, 8 m n+2 m-2$ and $\left|v_{f}(a)-v_{f}(b)\right| \leq 1$ for all $a, b \in A$. Hence, $T \hat{o} Q_{n}$ is an even vertex equitable even graph.

Example 2.2. An even vertex equitable even labeling of $T \hat{o} Q_{2}$ where T is a T_{p}-tree with 8 vertices is shown in Figure 2.

Figure 2

Theorem 2.3. Let T be a T_{p}-tree on m vertices. Then the graph $T o Q_{n}$ is an even vertex equitable even graph.

Proof. Let T be a T_{p}-tree with m vertices. By the definition of a transformed tree there exists a parallel transformation P of T such that for the path $P(T)$, we have $(i) V(P(T))=V(T)$ and $(i i) E(P(T))=\left(E(T)-E_{d}\right) \bigcup E_{p}$, where E_{d} is the set of edges deleted from T and E_{p} is the set of edges newly added through the sequence $P=\left(P_{1}, P_{2}, \cdots, P_{k}\right)$ of the epts P used to arrive at the path $P(T)$. Clearly, E_{d} and E_{p} have the same number of edges. Denote the vertices of $P(T)$ successively as $v_{1}, v_{2}, \cdots, v_{m}$ starting from one pendant vertex of $P(T)$ right up to the other. Let $u_{1}^{j}, u_{2}^{j}, \cdots, u_{n}^{j}, u_{n+1}^{j}(1 \leq j \leq m)$ be the vertices of $j^{\text {th }}$ copy of Q_{n}. Then $V\left(T \tilde{o} Q_{n}\right)=\left\{v_{j}, u_{i}^{j}: 1 \leq i \leq n+1,1 \leq j \leq m\right\} \bigcup\left\{x_{i}^{j}, y_{i}^{j}: 1 \leq i \leq n, 1 \leq j \leq m\right\}$ and $E\left(T \tilde{o} Q_{n}\right)=E(T) \bigcup E\left(Q_{n}\right) \bigcup\left\{v_{j} u_{n+1}^{j}: 1 \leq j \leq m\right\}$. We note that $\left|V\left(T \tilde{o} Q_{n}\right)\right|=m(3 n+2)$ and $\left|E\left(T \tilde{o} Q_{n}\right)\right|=4 m n+2 m-1$. Define
$f: V\left(T \tilde{o} Q_{n}\right) \rightarrow A= \begin{cases}0,2, \cdots, 4 m n+2 m & \text { if } 4 m n+2 m-1 \text { is odd } \\ 0,2, \cdots, 4 m n+2 m-1 & \text { if } 4 m n+2 m-1 \text { is even }\end{cases}$
as follows:

$$
f\left(v_{j}\right)= \begin{cases}(4 n+2) j & \text { if } j \text { is odd and } 1 \leq j \leq m \\ (4 n+2)(j-1) & \text { if } j \text { is even and } 1 \leq j \leq m\end{cases}
$$

For $1 \leq i \leq n+1$,

$$
f\left(u_{i}^{j}\right)= \begin{cases}(4 n+2)(j-1)+4(i-1) & \text { if } j \text { is odd and } 1 \leq j \leq m \\ (4 n+2) j-4(i-1) & \text { if } j \text { is even and } 1 \leq j \leq m\end{cases}
$$

For $1 \leq i \leq n$,

$$
f\left(x_{i}^{j}\right)= \begin{cases}(4 n+2)(j-1)+4 i & \text { if } j \text { is odd and } 1 \leq j \leq m \\ (4 n+2) j-4 i+2 & \text { if } j \text { is even and } 1 \leq j \leq m\end{cases}
$$

$$
f\left(y_{i}^{j}\right)= \begin{cases}(4 n+2)(j-1)+4(i-1)+2 & \text { if } j \text { is odd and } 1 \leq j \leq m \\ (4 n+2) j-4 i & \text { if } j \text { is even and } 1 \leq j \leq m\end{cases}
$$

Let $v_{i} v_{j}$ be a transformed edge in $T, 1 \leq i<j \leq m$ and let P_{1} be the ept obtained by deleting the edge $v_{i} v_{j}$ and adding the edge $v_{i+t} v_{j-t}$ where t is the distance of v_{i} from v_{i+t} and also the distance of v_{j} from v_{j-t}. Let P be a parallel transformation of T that contains P_{1} as one of the constituent epts. Since $v_{i+t} v_{j-t}$ is an edge in the path $P(T)$, it follows that $i+t+1=j-t$ which implies $j=i+2 t+1$. Therefore, i and j are of opposite parity.
The value of the edge $v_{i} v_{j}$ is given by

$$
\begin{aligned}
f^{*}\left(v_{i} v_{j}\right) & =f^{*}\left(v_{i} v_{i+2 t+1}\right) \\
& =f\left(v_{i}\right)+f\left(v_{i+2 t+1}\right) \\
& =(4 n+2)(2 i+2 t)
\end{aligned}
$$

The value of the edge $v_{i+t} v_{j-t}$ is given by

$$
\begin{aligned}
f^{*}\left(v_{i+t} v_{j-t}\right) & =f^{*}\left(v_{i+t} v_{i+t+1}\right) \\
& =f\left(v_{i+t}\right)+f\left(v_{i+t+1}\right) \\
& =(4 n+2)(2 i+2 t)
\end{aligned}
$$

Therefore, $f^{*}\left(v_{i} v_{j}\right)=f^{*}\left(v_{i+t} v_{j-t}\right)$.
The induced edge labels are

$$
f^{*}\left(v_{j} v_{j+1}\right)=(4 n+1)(2 j), 1 \leq j \leq m-1
$$

For $1 \leq j \leq m$ and $1 \leq i \leq n$,

$$
\begin{aligned}
& f^{*}\left(u_{i}^{j} x_{i}^{j}\right)= \begin{cases}(4 n+2) 2(j-1)+4(2 i-1) & \text { if } j \text { is odd } \\
(4 n+2) 2 j-4(2 i-1)+2 & \text { if } j \text { is even } ;\end{cases} \\
& f^{*}\left(u_{i}^{j} y_{i}^{j}\right)= \begin{cases}(4 n+2) 2(j-1)+8(i-1)+2 & \text { if } j \text { is odd } \\
(4 n+2) 2 j-4(2 i-1) & \text { if } j \text { is even } ;\end{cases} \\
& f^{*}\left(x_{i}^{j} u_{i+1}^{j}\right)= \begin{cases}(4 n+2) 2(j-1)+8 i & \text { if } j \text { is odd } \\
(4 n+2) 2 j-8 i+2 & \text { if } j \text { is even } ;\end{cases} \\
& f^{*}\left(y_{i}^{j} u_{i+1}^{j}\right)= \begin{cases}(4 n+2) 2(j-1)+8 i-2 & \text { if } j \text { is odd } \\
(4 n+2) 2 j-8 i & \text { if } j \text { is even } ;\end{cases} \\
& f^{*}\left(v_{j} u_{n+1}^{j}\right)= \begin{cases}(4 n+2)(2 j-1)+4 n & \text { if } j \text { is odd } \\
(4 n+2)(2 j-1)-4 n & \text { if } j \text { is even } .\end{cases}
\end{aligned}
$$

Thus, it can be verified that the induced edge labels of $T \tilde{o} Q_{n}$ are $2,4, \cdots, 8 m n+4 m-2$ and $\left|v_{f}(a)-v_{f}(b)\right| \leq 1$ for all $a, b \in A$. Hence, $T \tilde{o} Q_{n}$ is an even vertex equitable even graph.

Example 2.4. An even vertex equitable even labeling of $T \widetilde{o} Q_{2}$ where T is a T_{p}-tree with 8 vertices is shown in Figure 3.

Figure 3

Theorem 2.5. The H-graph is an even vertex equitable even graph.
Proof. Let $V\left(H_{n}\right)=\left\{u_{i}, v_{i}: 1 \leq i \leq n\right\}$ and $E\left(H_{n}\right)=\left\{u_{i} u_{i+1}: 1 \leq i \leq n-1\right\} \bigcup\left\{v_{i} v_{i+1}\right.$: $1 \leq i \leq n-1\} \bigcup\left\{u_{\left\lfloor\frac{n}{2}\right\rfloor} v_{\left\lceil\frac{n}{2}\right\rceil}\right\}$. Then H_{n} is of order $2 n$ and size $2 n-1$. Define $f: V\left(H_{n}\right) \rightarrow A=\{0,2,4, \cdots, 2 n+2\}$ as follows:

$$
\begin{aligned}
& f\left(u_{i}\right)= \begin{cases}2 i-2, & \text { if } i \text { is odd and } 1 \leq i \leq n \\
2 i, & \text { if } i \text { is even and } 1 \leq i \leq n\end{cases} \\
& f\left(v_{i}\right)= \begin{cases}2 n-(i-1), & \text { if } i \text { is odd and } 1 \leq i \leq n \\
2 n-i, & \text { if } i \text { is even and } 1 \leq i \leq n\end{cases}
\end{aligned}
$$

Then the induced edge labels are

$$
\begin{aligned}
& f\left(u_{i} u_{i+1}\right)=2 i, 1 \leq i \leq n-1 ; \\
& f\left(v_{i} v_{i+1}\right)=2 n-2(i-1), 1 \leq i \leq n-1 ; \\
& f\left(u_{\left\lfloor\frac{n}{2}\right\rfloor^{v}\left\lceil\frac{n}{2}\right\rceil}\right)=2 n
\end{aligned}
$$

Thus, it can be verified that the induced edge labels of H_{n} are $2,4, \cdots, 4 n-2$ and $\mid v_{f}(a)-$ $v_{f}(b) \mid \leq 1$ for all $a, b \in A$. Hence, H_{n} is an even vertex equitable even graph.

REFERENCES

[1] J. A. Gallian, A Dyamic Survey of Graph Labeling, The Electronic Journal of Combinatorics, $\mathbf{1 8}$ (2015) \# DS6.
[2] F. Harary, Graph Theory, Addison-wesley, Reading, Mass 1972.
[3] S. M. Hegde and Sudhakar Shetty, On Graceful Trees, Applied Mathematics E-Notes, 2 (2002), 192-197.
[4] P. Jeyanthi and A. Maheswari, Some Results on Vertex Equitable Labeling, Open Journal of Discrete Mathematics, 2(2), (2012), 51-57.
[5] P. Jeyanthi and A. Maheswari, Vertex Equitable Labeling of Transformed Trees, Journal of Algorithms and Computation, 44(1), (2013), 9-20.
[6] P. Jeyanthi, A. Maheswari and M. Vijaya Laksmi, Vertex Equitable Labeling of Cycle and Star Related graphs, Journal of Scientific Research, 7(3), (2015), 33-42.
[7] P. Jeyanthi and A. Maheswari, Vertex Equitable Labeling of Cycle and Path related graphs, Utilitas Mathematica, 98, (2015), 215-226.
[8] P. Jeyanthi A. Maheswari and M. Vijaya Laksmi, Vertex Equitable Labeling of Double Alternate Snake Graphs, Journal of Algorithms and Computation, 46, (2015), 27-34.
[9] P. Jeyanthi, A. Maheswari and M. Vijaya Laksmi, Vertex Equitable Labeling of Super Subdivision Graphs, Scientific International, 27(5), (2015), 3881-3883.
[10] P. Jeyanthi, A. Maheswari and M. Vijaya Laksmi, New Results on Vertex Equitable labeling, Journal of Algebra Combinatorics Discrete Structures and Applications, 3(2), (2016), 97-104.
[11] P. Jeyanthi, A. Maheswari and M. Vijaya Laksmi, Vertex Equitable Labeling of Union of Cyclic Snake graphs, Proyecciones Journal of Mathematics, 35(1), (2016), 177-186.
[12] A. Lourdusamy and F. Patrick, Even Vertex Equitable Even Labeling of Path and Bistar Related Graphs, Information Sciences and Computing, Article ID: ISC650716, (2016), 1-9.
[13] A. Lourdusamy and F. Patrick, Even Vertex Equitable Even Labeling for Corona and T_{p}-Tree Related Graphs, (Accepted in Utilitas Mathematica).
[14] A. Lourdusamy and F. Patrick, On Even Vertex Equitable Even Graphs, International Journal of Pure and Applied Mathematics, 117(12), (2017), 19-25.
[15] A. Lourdusamy and F. Patrick, Even Vertex Equitable Even Labeling for Cycle Related Graphs, Kragujevac Journal of Mathematics, 43(3), (2019), 427-441.
[16] A. Lourdusamy, S. Jenifer Wency and F. Patrick, Even Vertex Equitable Even Labeling for Snake Related Graphs, (Accepted in Proyecciones Journal of Mathematics)
[17] A. Lourdusamy, S. Jenifer Wency and F. Patrick, Further Results on Even Vertex Equitable Even Labeling, submitted for publication.
[18] A. Lourdusamy, J. Shobana Mary and F. Patrick, Even Vertex Equitable Even Labeling, Sciencia Acta Xaveriana, 7(1), (2016), 37-46.
[19] A. Lourdusamy, J. Shobana Mary and F. Patrick, Even Vertex Equitable Even Labeling for Path Related Graphs, Sciencia Acta Xaveriana, 7(1), (2016), 47-56.
[20] A. Lourdusamy and M. Seenivasan, Vertex Equitable Labeling of Graphs, Journal of Discrete Mathematical Sciences and Cryptography, 11(6), (2008), 727-735.

